Все формулы аминокислот. Оптимальное соотношение аминокислот в всаа. Аминокислоты в таблетках

Аминокислоты.

Аминокислоты (аминокарбоновые кислоты) - органические соединения, в молекуле которых одновременно содержатся карбоксильные (-COOH ) и аминные группы (-NH 2 ).


Строение аминокислот можно выразить приведённой ниже общей формулой,
(где R – углеводородный радикал, который может содержать и различные функциональные группы).

Аминокислоты могут рассматриваться как производные карбоновых кислот , в которых один или несколько атомов водорода заменены на аминные группы (-NH2 ).


В качестве примера можно привести простейшие: аминоуксусную кислоту, или глицин , и аминопропионовую кислоту или аланин :


Химические свойства аминокислот

Аминокислоты – амфотерные соединения , т.е. в зависимости от условий они могут проявлять как основные, так и кислотные свойства.


За счёт карбоксильной группы (-COOH ) они образуют соли с основаниями.
За счёт аминогруппы (-NH 2 ) образуют соли с кислотами.


Ион водорода, отщепляющийся при диссоциации от карбоксила (-ОН ) аминокислоты, может переходить к её аминогруппе с образованием аммониевой группировки (NH 3 + ).


Таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных ионов (внутренних солей).


Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

Альфа-аминокислоты

Из молекул аминокислот строятся молекулы белковых веществ или белков , которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.


Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.


Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот .


Альфа-аминокислоты – кристаллические вещества, растворимые в воде. Многие из них обладают сладким вкусом. Это свойство нашло отражение в названии первого гомолога в ряду альфа-аминокислот – глицина , явившегося также первой альфа-аминокислотой, обнаруженной в природном материале.


Ниже приведена таблица с перечнем альфа-аминокислот:


Название
Формула
Название остатка
Аминокислоты с алифатическими радикалами
ОН-группу
Ser
Thr
Аминокислоты с радикалами, содержащими COОН-группу
Asp
Glu
Аминокислоты с радикалами, содержащими NH 2 CO -группу
Asn
Gln
Аминокислоты с радикалами, содержащими NH 2 -группу
Lys
Arg
Аминокислоты с радикалами, содержащими cеру
Cys
Met
Аминокислоты с ароматическими радикалами
Phe
Tyr
Аминокислоты с гетероциклическими радикалами
Trp
His
Pro

Незаменимые аминокислоты

Основным источником альфа-аминокислот для животного организма служат пищевые белки.


Многие альфа-аминокислоты синтезируются в организме, некоторые же необходимые для синтеза белков альфа-аминокислоты в организме не синтезируются и должны поступать извне, с продуктами питания . Такие аминокислоты называют незаменимыми . Вот их список:


Название аминокислоты
Название продуктов питания

зерновые, бобовые, мясо, грибы, молочные продукты, арахис

миндаль, кешью, куриное мясо, турецкий горох (нут), яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соя

мясо, рыба, чечевица, орехи, большинство семян, курица, яйца, овёс, бурый (неочищенный) рис

рыба, мясо, молочные продукты, пшеница, орехи, амарант

молоко, мясо, рыба, яйца, бобы, фасоль, чечевица и соя

молочные продукты, яйца, орехи, бобы

бобовые, овёс, бананы, сушёные финики, арахис, кунжут, кедровые орехи, молоко, йогурт, творог, рыба, курица, индейка, мясо

бобовые, орехи, говядина, куриное мясо, рыба, яйца, творог, молокос

семена тыквы, свинина, говядина, арахис, кунжут, йогурт, швейцарский сыр

тунец, лосось, свиная вырезка, говяжье филе, куриные грудки, соевые бобы, арахис, чечевица


При некоторых, часто врождённых, заболеваниях перечень незаменимых кислот расширяется. Например, при фенилкетонурии человеческий организм не синтезирует ещё одну альфа-аминокислоту - тирозин , который в организме здоровых людей получается при гидроксилировании фенилаланина.

Использование аминокислот в медицинской практике

Альфа-аминокислоты занимают ключевое положение в азотистом обмене . Многие из них используются в медицинской практике в качестве лекарственных средств , влияющих на тканевый обмен.


Так, глутаминовая кислота применяется для лечения заболеваний центральной нервной системы, метионин и гистидин – лечения и предупреждения заболеваний печени, цистеин – глазных болезней.

(аминокислоты с разветвленными цепочками ) имеют важное значение для мышечной ткани. Но далеко не все знают, каким должно быть правильное соотношение этих аминокислот между собой.

СЕГОДНЯ ПРИХОДИТСЯ СТАЛКИВАТЬСЯ С ВЕЛИКИМ МНОЖЕСТВОМ ПРЕДСТАВЛЕННЫХ НА РЫНКЕ АМИНОКИСЛОТ ВСАА, СООТНОШЕНИЕ В КОТОРЫХ ВАРЬИРУЕТСЯ ОТ 2:1:1 до 12:1:1. И ЧТО ЖЕ ВЫБРАТЬ?

Опытные спортсмены давно знакомы с и знают, насколько мощная это штука. Лейцин, валин и изолейцин, а точнее их комбинация, завоевали славу одной из самых рабочих добавок на рынке спортивного питания. Однако, учитывая, что различные добавки содержат различные соотношения этих трех аминокислот, появляется много путаницы. Прежде чем мы углубимся в эту дискуссию, вот краткий обзор этой добавки.

ПОМОЩЬ В СЖИГАНИИ ЖИРА


Если вы заинтересованы в потере жира, есть еще одна причина, почему соотношение 2:1:1 лучше. Итак, изолейцин.

Японские исследователи обнаружили, что мыши, получавшие изолейцин во время диеты с высоким содержанием жиров, набрали значительно меньше жировой массы, чем те мыши, которые не получали изолейцин . Это было связано со способностью изолейцина активировать специальные рецепторы, которые увеличивают сжигание жира и препятствуют его накоплению. Это приводит к большей способности сжигать жиры и меньшей вероятности запасать их.

Оказывается, что BCAA , которые имеют соотношение намного выше, чем 2:1:1 , могут работать против вас. Некоторые BCAA - продукты обеспечивают только 500 мг или даже менее валина и изолейцина . Держитесь подальше от них. Этого количества не достаточно, чтобы держать вас под напряжением, зато достаточно, чтобы обеспечить тупую усталость во время тренировок. Это не поможет максимизировать синтез мышечного белка и как результат рост мышц.

ВЫВОД

Наш совет - придерживаться BCAA -продуктов, которые используют соотношение 2:1:1 , обеспечивающих по меньшей мере 1 грамм изолейцина и 1 гр валина на порцию. Но если вы ищете самый оптимальный вариант, остановите свой выбор на 3 гр лейцина на порцию.

Во время тренировки также можно принять еще одну порцию ВСАА . Также убедитесь, что вы получаете по крайней мере 1 гр изолейцина и валина после тренировок, наряду с по крайней мере 3 гр лейцина .

Имейте в виду, что это должно быть в дополнение к пред- и после тренировочному протеиновому шейку или один большой протеиновый коктейль, который вы будете потягивать до, во время и после тренировки. Это позволит увеличить содержание BCAA , но не волнуйтесь: вам по-прежнему нужны эти аминокислоты, чтобы максимизировать рост мышечной массы и энергии.

Аминокислоты - главный строительный материал любого живого организма. По своей природе они являются первичными азотистыми веществами растений, которые синтезируются из почвы. Строение и и аминокислот зависят от их состава.

Структура аминокислоты

Каждая ее молекула имеет карбоксильные и аминные группы, которые соединены с радикалом. Если аминокислота содержит 1 карбоксильную и 1 амино-группу, строение ее можно обозначить формулой, представленной ниже.

Аминокислоты, которые имеют 1 кислотную и 1 щелочную группу, называют моноаминомонокарбоновыми. В организмах также синтезируются и функции которых обусловливают 2 карбоксильных группы или 2 аминных группы. Аминокислоты, содержащие 2 карбоксильные и 1 аминную группы, называют моноаминодикарбоновыми, а имеющие 2 аминные и 1 карбоксильную - диаминомонокарбоновыми.

Также они различны по строению органического радикала R. У каждой из них имеется свое наименование и структура. Отсюда и различные функции аминокислот. Именно наличие кислотной и щелочной групп обеспечивает ее высокую реактивность. Эти группы соединяют аминокислоты и образуют полимер - белок. Белки еще именуются полипептидами из-за своего строения.

Аминокислоты как строительный материал

Молекула белка - это цепочка из десятков или сотен аминокислот. Белки отличаются по составу, количеству и порядку расположения аминокислот, ведь число сочетаний из 20 составляющих практически бесконечно. Одни из них имеют весь состав незаменимых аминокислот, иные обходятся без одной или нескольких. Отдельные аминокислоты, структура, функции которых подобны белкам человеческого тела, не применяются в качестве пищевых, так как малорастворимы и не расщепляются ЖКТ. К таким принадлежат белки ногтей, волос, шерсти или перьев.

Функции аминокислот трудно переоценить. Эти вещества выступают главной пищей в рационе людей. Какую функцию выполняют аминокислоты? Они увеличивают рост мышечной массы, помогают укреплению суставов и связок, восстанавливают поврежденные ткани организма и участвуют во всех процессах, происходящих в теле человека.

Незаменимые аминокислоты

Только из добавок или пищевых продуктов можно получить Функции в процессе формирования здоровых суставов, крепких мышц, красивых волос очень значимы. К таким аминокислотам относятся:

  • фенилаланин;
  • лизин;
  • треонин;
  • метионин;
  • валин;
  • лейцин;
  • триптофан;
  • гистидин;
  • изолейцин.

Функции аминокислот незаменимых

Эти кирпичики выполняют важнейшие функции в работе каждой клетки человеческого организма. Они незаметны, пока поступают в организм в достаточном количестве, но их недостаток существенно ухудшает работу всего организма.

  1. Валин возобновляет мышцы, служит отличным источником энергии.
  2. Гистидин улучшает состав крови, способствует восстановлению и росту мышц, улучшает работу суставов.
  3. Изолейцин помогает выработке гемоглобина. Контролирует количество сахара в крови, повышает энергичность человека, выносливость.
  4. Лейцин укрепляет иммунитет, следит за уровнем сахара и лейкоцитов в крови. Если уровень лейкоцитов завышен: он их понижает и подключает резервы организма для ликвидации воспаления.
  5. Лизин помогает усвоению кальция, что формирует и укрепляет кости. Помогает выработке коллагена, улучшает структуру волос. Для мужчин это отличный анаболик, так как он наращивает мышцы и увеличивает мужскую силу.
  6. Метионин нормализует работу пищеварительной системы и печени. Участвует в расщеплении жиров, убирает токсикоз у беременных, благотворно влияет на волосы.
  7. Треонин улучшает работу ЖКТ. Повышает иммунитет, участвует в создании эластина и коллагена. Треонин препятствует отложению жира в печени.
  8. Триптофан отвечает за эмоции человека. Вырабатывает серотонин - гормон счастья, тем самым нормализует сон, поднимает настроение. Укрощает аппетит, благотворительно влияет на сердечную мышцу и артерии.
  9. Фенилаланин служит передатчиком сигналов от нервных клеток в мозг головы. Улучшает настроение, подавляет нездоровый аппетит, улучшает память, повышает восприимчивость, снижает боль.

Дефицит незаменимых аминокислот приводит к остановке роста, нарушению обмена веществ, снижению мышечной массы.

Заменимые аминокислоты

Это такие аминокислоты, строение и функции которых вырабатываются в организме:

  • аргинин;
  • аланин;
  • аспарагин;
  • глицин;
  • пролин;
  • таурин;
  • тирозин;
  • глутамат;
  • серин;
  • глутамин;
  • орнитин;
  • цистеин;
  • карнитин.

Функции аминокислот заменимых

  1. Цистеин ликвидирует токсические вещества, участвует в создании тканей кожи и мышц, представляет собой естественный антиоксидант.
  2. Тирозин снижает физическую усталость, ускоряет метаболизм, ликвидирует стресс и депрессию.
  3. Аланин служит для роста мускулатуры, является источником энергии.
  4. увеличивает метаболизм и снижает образование аммиака при больших нагрузках.
  5. Цистин устраняет боль при травмировании связок и суставов.
  6. отвечает за мозговую активность, во время длительных физических нагрузок переходит в глюкозу, вырабатывая энергию.
  7. Глутамин восстанавливает мышцы, повышает иммунитет, ускоряет метаболизм, усиливает работу мозга и создает гормон роста.
  8. Глицин необходим для работы мышц, расщепления жира, стабилизации артериального давления и сахара в крови.
  9. Карнитин перемещает жировые кислоты в клетки, где совершается их расщепление с выделением энергии, в результате чего сжигается лишний жир и генерируется энергия.
  10. Орнитин производит гормон роста, участвует в процессе мочеобразования, расщепляет жирные кислоты, помогает выработке инсулина.
  11. Пролин обеспечивает производство коллагена, он необходим для связок и суставов.
  12. Серин повышает иммунитет и вырабатывает энергию, нужен для быстрого метаболизма жирных кислот и роста мышц.
  13. Таурин расщепляет жир, поднимает сопротивляемость организма, синтезирует желчные соли.

Белок и его свойства

Белки, или протеины - высокомолекулярные соединения с содержанием азота. Понятие "протеин", впервые обозначенное Берцелиусом в 1838 г., происходит от греческого слова и означает "первичный", что отображает лидирующее значение протеинов в природе. Разновидность белков дает возможность для существования огромного количества живых существ: от бактерий до человеческого организма. Их существенно больше, чем других макромолекул, ведь белки - это фундамент живой клетки. Составляют приблизительно 20% от массы человеческого тела, больше 50% сухой массы клетки. Такое количество разнообразных белков объясняется свойствами двадцати различных аминокислот, которые взаимодействуют друг с другом и создают полимерные молекулы.

Выдающееся свойство белков - способность к самостоятельному созданию определенной, свойственной конкретному белку пространственной структуры. По белки - это биополимеры с пептидными связями. Для химического состава белков свойственно постоянное среднее содержание азота - приблизительно 16%.

Жизнь, а также рост и развитие организма невозможны без функции белковых аминокислот строить новые клетки. Белки нельзя заменить прочими элементами, их роль в человеческом организме является чрезвычайно важной.

Функции белков

Необходимость белков заключается в таких функциях:

  • он необходим для роста и развития, так как выступает главным строительным материалом для создания новых клеток;
  • управляет метаболизмом, во время которого освобождается энергия. После принятия пищи скорость метаболизма увеличивается, например, если еда состоит из углеводов, метаболизм ускоряется на 4%, если из белков - на 30%;
  • регулируют в организме, благодаря своей гидрофильности - способности притягивать воду;
  • усиливают работу иммунной системы, синтезируя антитела, которые защищают от инфекции и ликвидируют угрозу заболевания.

Продукты - источники белков

Мышцы и скелет человека состоят из живых тканей, которые на протяжении жизни не только функционируют, но и обновляются. Восстанавливаются после повреждений, сохраняют свою силу и прочность. Для этого им требуются вполне определенные питательные вещества. Пища обеспечивает организм энергией, необходимой для всех процессов, включая работу мышц, рост и восстановление тканей. А белок в организме используется и как источник энергии, и как стройматериал.

Поэтому очень важно соблюдать его ежедневное использование в пищу. Богатые белком продукты: курица, индейка, постная ветчина, свинина, говядина, рыба, креветки, фасоль, чечевица, бекон, яйца, орех. Все эти продукты обеспечивают организм белком и дают энергию, необходимую для жизни.

Химические вещества, содержащие структурные компоненты молекулы карбоновой кислоты и амина, называются аминокислотами. Это общее название группы органических соединений, в составе которых присутствует углеводородная цепь, карбоксильная группа (-СООН) и аминогруппа (-NH2). Их предшественниками являются карбоновые кислоты, а молекулы, у которых водород у первого углеродного атома замещен аминогруппой, называются альфа-аминокислотами.

Всего 20 аминокислот имеют ценность для ферментативных реакций биосинтеза, протекающих в организме всех живых существ. Эти вещества называются стандартными аминокислотами. Существуют также нестандартные аминокислоты, которые включены в состав некоторых специальных белковых молекул. Они не встречаются повсеместно, хотя выполняют важную функцию в живой природе. Вероятно, радикалы этих кислот модифицируются уже после биосинтеза.

Общая информация и список веществ

Известны две большие группы аминокислот, которые были выделены по причине закономерностей их нахождения в природе. В частности, существуют 20 аминокислот стандартного типа и 26 нестандартных аминокислот. Первые находят в составе белков любого живого организма, тогда как вторые являются специфическими для отдельных живых организмов.

20 аминокислот стандартных делятся на 2 типа в зависимости от способности синтезироваться в человеческом организме. Это заменимые, которые в клетках человека способны образовываться из предшественников, и незаменимые, для синтеза которых не существует ферментных систем или субстрата. Заменимые аминокислоты могут не присутствовать в пище, так как их организм может синтезировать, восполняя их количество при необходимости. Незаменимые аминокислоты не могут быть получены организмом самостоятельно, а поэтому должны поступать с пищей.

Биохимиками определены названия аминокислот из группы незаменимых. Всего их известно 8:

  • метионин;
  • треонин;
  • изолейцин;
  • лейцин;
  • фенилаланин;
  • триптофан;
  • валин;
  • лизин;
  • также часто сюда относят гистидин.

Это вещества с различным строением углеводородного радикала, но обязательно с наличием карбоксильной группы и аминогруппы у альфа-С-атома.

В группе заменимых аминокислот присутствует 11 веществ:

  • аланин;
  • глицин;
  • аргинин;
  • аспарагин;
  • кислота аспарагиновая;
  • цистеин;
  • кислота глютаминовая;
  • глютамин;
  • пролин;
  • серин;
  • тирозин.

В основном их химическое строение проще, нежели у незаменимых, поэтому их синтез дается организму легче. Большинство незаменимых аминокислот невозможно получить только из-за отсутствия субстрата, то есть молекулы-предшественника путем реакции переаминирования.

Глицин, аланин, валин

В биосинтезе белковых молекул наиболее часто используется глицин, валин и аланин, (формула каждого вещества указана ниже на рисунке). Эти аминокислоты самые простые по химической структуре. Вещество глицин и вовсе является простейшим в классе аминокислот, то есть помимо альфа-углеродного атома соединение не имеет радикалов. Однако даже простейшая по структуре молекула играет важную роль в обеспечении жизнедеятельности. В частности, из глицина синтезируется порфириновое кольцо гемоглобина, пуриновые основания. Порфировое кольцо — это белковый участок гемоглобина, призванный удерживать атомы железа в составе целостного вещества.

Глицин участвует в обеспечении жизнедеятельности головного мозга, выступая тормозным медиатором ЦНС. Это означает, что он в большей степени участвует в работе коры головного мозга — его наиболее сложно организованной ткани. Что важнее, глицин является субстратом для синтеза пуриновых оснований, нужных для образования нуклеотидов, которые кодируют наследственную информацию. Вдобавок глицин служит источником для синтеза других 20 аминокислот, тогда как сам может быть образован из серина.

У аминокислоты аланин формула немногим сложнее, чем у глицина, так как она имеет метильный радикал, замененный на один атом водорода у альфа-углеродного атома вещества. При этом аланин также остается одной из самых часто вовлекаемых в процессы биосинтеза белков молекулой. Она входит в состав любого белка в живой природе.

Неспособный синтезироваться в организме человека валин — аминокислота с разветвленной углеводородной цепочкой, состоящей из трех углеродных атомов. Изопропиловый радикал придает молекуле больший вес, однако из-за этого невозможно найти субстрат для биосинтеза в клетках человеческих органов. Поэтому валин должен обязательно поступать с пищей. Он присутствует преимущественно в структурных белках мышц.

Результаты исследований подтверждают, что валин необходим для функционирования центральной нервной системы. В частности, за счет его способности восстанавливать миелиновую оболочку нервных волокон он может использоваться в качестве вспомогательного средства при лечении рассеянного склероза, наркоманий, депрессий. В большом количестве содержится в мясных продуктах, рисе, сушеном горохе.

Тирозин, гистидин, триптофан

В организме тирозин способен синтезироваться из фенилаланина, хотя в большом количестве поступает с молочной пищей, преимущественно с творогом и сырами. Входит в состав казеина - животного белка, в избытке содержащемся в творожных и сырных продуктах. Ключевое значение тирозина в том, что его молекула становится субстратом синтеза катехоламинов. Это адреналин, норадреналин, дофамин - медиаторы гуморальной системы регуляции функций организма. Тирозин способен быстро проникать и через гематоэнцефалический барьер, где быстро превращается в дофамин. Молекула тирозина участвует в меланиновом синтезе, обеспечивая пигментацию кожи, волос и радужки глаза.

Аминокислота гистидин входит в состав структурных и ферментных белков организма, является субстратом синтеза гистамина. Последний регулирует желудочную секрецию, участвует в иммунных реакциях, регулирует заживление повреждений. Гистидин является незаменимой аминокислотой, и организм восполняет ее запасы только из пищи.

Триптофан так же неспособен синтезироваться организмом из-за сложности своей углеводородной цепочки. Он входит в состав белков и является субстратом синтеза серотонина. Последний является медиатором нервной системы, призванным регулировать циклы бодрствования и сна. Триптофан и тирозин - эти названия аминокислот следует помнить нейрофизиологам, так как из них синтезируются главные медиаторы лимбической системы (серотонин и дофамин), обеспечивающие наличие эмоций. При этом не существует молекулярной формы, обеспечивающей накопление незаменимых аминокислот в тканях, из-за чего они должны присутствовать в пище ежедневно. Белковая еда в количестве 70 граммов в сутки полностью обеспечивает эти потребности организма.

Фенилаланин, лейцин и изолейцин

Фенилаланин примечателен тем, что из него синтезируется аминокислота тирозин при ее недостатке. Сам фенилаланин является структурным компонентом всех белков в живой природе. Это метаболический предшественник нейромедиатора фенилэтиламина, обеспечивающий ментальную концентрацию, подъем настроения и психостимуляцию. В РФ в концентрации свыше 15% оборот данного вещества запрещен. Эффект фенилэтиламина схожий с таковым у амфетамина, однако первый не отличается пагубным воздействием на организм и отличается лишь развитием психической зависимости.

Одно из главных веществ группы аминокислот — лейцин, из которого синтезируются пептидные цепи любого белка человека, включая ферменты. Соединение, применяемое в чистом виде, способно регулировать функции печени, ускорять регенерацию ее клеток, обеспечивать омоложение организма. Поэтому лейцин — аминокислота, которая выпускается в виде лекарственного препарата. Она отличается высокой эффективностью в ходе вспомогательного лечения цирроза печени, анемии, лейкоза. Лейцин — аминокислота, существенно облегчающая реабилитацию пациентов после химиотерапии.

Изолейцин, как и лейцин, не способен синтезироваться организмом самостоятельно и относится к группе незаменимых. Однако это вещество не является лекарственным средством, так как организм испытывает в нем небольшую потребность. В основном в биосинтезе участвует только один его стереоизомер (2S,3S)-2-амино-3-метилпентановая кислота.

Пролин, серин, цистеин

Вещество пролин — аминокислота с циклическим углеводородным радикалом. Ее основная ценность в наличии кетонной группы цепочки, из-за чего вещество активно используется в синтезе структурных белков. Восстановление кетона гетероцикла до гидроксильной группы с образованием гидроксипролина формирует множественные водородные связи между цепочками коллагена. В результате нити этого белка сплетаются между собой и обеспечивают прочную межмолекулярную структуру.

Пролин — аминокислота, обеспечивающая механическую прочность тканей человека и его скелета. Наиболее часто она находится в коллагене, входящем в состав костей, хряща и соединительной ткани. Как и пролин, цистеин является аминокислотой, из которой синтезируется структурный белок. Однако это не коллаген, а группа веществ альфа-кератинов. Они образуют роговой слой кожи, ногти, имеются в составе чешуек волос.

Вещество серин — аминокислота, существующая в виде оптических L и D-изомеров. Это заменимое вещество, синтезируемое из фосфоглицерата. Серин способен образовываться в ходе ферментативной реакции из глицина. Данное взаимодействие обратимое, а поэтому глицин может образовываться из серина. Основная ценность последнего в том, что из серина синтезируются ферментативные белки, точнее их активные центры. Широко серин присутствует в составе структурных белков.

Аргинин, метионин, треонин

Биохимиками определено, что избыточное потребление аргинина провоцирует развитие заболевания Альцгеймера. Однако помимо негативного значения у вещества присутствуют и жизненно-важные для размножения функции. В частности, за счет наличия гуанидиновой группы, пребывающей в клетке в катионной форме, соединение способно образовывать огромное количество водородных межмолекулярных связей. Благодаря этому аргинин в виде цвиттер-иона обретает способность связаться с фосфатными участками молекул ДНК. Результатом взаимодействия является образование множества нуклеопротеидов - упаковочной формы ДНК. Аргинин в ходе изменения рН ядерного матрикса клетки может отсоединяться от нуклеопротеида, обеспечивая раскручивание цепи ДНК и начало трансляции для биосинтеза белка.

Аминокислота метионин в своей структуре содержит атом серы, из-за чего чистое вещество в кристаллическом виде имеет неприятный тухлый запах из-за выделяемого сероводорода. В организме человека метионин выполняет регенераторную функцию, способствуя заживлению мембран печеночных клеток. Поэтому выпускается в виде аминокислотного препарата. Из метионина синтезируется и второй препарат, предназначенный для диагностики опухолей. Синтезируется он путем замещения одного углеродного атома на его изотоп С11. В таком виде он активно накапливается в опухолевых клетках, давая возможность определять размеры новообразований головного мозга.

В отличие от указанных выше аминокислот, треонин имеет меньшее значение: аминокислоты из него не синтезируются, а его содержание в тканях невелико. Основная ценность треонина — включение в состав белков. Специфических функций эта аминокислота не имеет.

Аспарагин, лизин, глутамин

Аспарагин — распространенная заменимая аминокислота, присутствующая в виде сладкого на вкус L-изомера и горького D-изомера. Из аспарагина образуются белки организма, а путем глюконеогенеза синтезируется оксалоацетат. Это вещество способно окисляться в цикле трикарбоновых кислот и давать энергию. Это означает, что помимо структурной функции аспарагин выполняет и энергетическую.

Неспособный синтезироваться в организме человека лизин — аминокислота с щелочными свойствами. Из нее в основном синтезируются иммунные белки, ферменты и гормоны. При этом лизин — аминокислота, самостоятельно проявляющая антивирусные средства против вируса герпеса. Однако вещество в качестве препарата не используется.

Аминокислота глутамин присутствует в крови в концентрациях, намного превышающих содержание прочих аминокислот. Она играет главную роль в биохимических механизмах азотистого обмена и выведения метаболитов, участвует в синтезе нуклеиновых кислот, ферментов, гормонов, способна укреплять иммунитет, хотя в качестве лекарственного препарата не используется. Но глутамин широко применяется среди спортсменов, так как помогает восстанавливаться после тренировок, удаляет метаболиты азота и бутирата из крови и мышц. Этот механизм ускорения восстановления спортсмена не считается искусственным и справедливо не признается допинговым. Более того, лабораторные способы уличения спортсменов в таком допинге отсутствуют. Глутамин также в значительном количестве присутствует в пище.

Аспарагиновая и глутаминовая кислота

Аспарагиновая и глутаминовая аминокислоты чрезвычайно ценные для организма человека из-за своих свойств, активирующих нейромедиаторов. Они ускоряют передачу информации между нейронами, обеспечивая поддержание работоспособности структур мозга, лежащих ниже коры. В таких структурах важна надежность и постоянство, ведь эти центры регулируют дыхание и кровообращение. Поэтому в крови присутствует огромное количество аспарагинивой и глутаминовой аминокислоты. Пространственная структурная формула аминокислот указана на рисунке ниже.

Аспарагиновая кислота участвует в синтезе мочевины, устраняя аммиак из головного мозга. Она является значимым веществом для поддержания высокой скорости размножения и обновления клеток крови. Разумеется, при лейкозе этот механизм вреден, а поэтому для достижения ремиссии используются препараты ферментов, разрушающих аспарагиновую аминокислоту.

Одну четвертую часть от числа всех аминокислот в организме составляет глутаминовая кислота. Это нейромедиатор постсинаптических рецепторов, необходимый для синаптической передачи импульса между отростками нейронов. Однако для глутаминовой кислоты характерен и экстрасинаптический путь передачи информации — объемная нейротансмиссия. Такой способ лежит в основе памяти и представляет собой нейрофизиологическую загадку, ведь пока не выяснено, какие рецепторы определяют количество глутамата вне клетки и вне синапсов. Однако предполагается, что именно количество вещества вне синапса имеет важность для объемной нейротрансмиссии.

Химическая структура

Все нестандартные и 20 стандартных аминокислот имеют общий план строения. Она включает циклическую или алифатическую углеводородную цепочку с наличием радикалов или без них, аминогруппу у альфа-углеродного атома и карбоксильную группу. Углеводородная цепочка может быть любой, чтобы вещество имело реакционную способность аминокислот, важно расположение основных радикалов.

Аминогруппа и карбоксильная группа должны быть присоединены к первому углеродному атому цепочки. Согласно принятой в биохимии номенклатуре, он называется альфа-атомом. Это важно для образования пептидной группы — важнейшей химической связи, благодаря которой существуют белок. С точки зрения биологической химии, жизнью называется способ существования белковых молекул. Главное значение аминокислот - это образование пептидной связи. Общая структурная формула аминокислот представлена в статье.

Физические свойства

Несмотря на схожую структуру углеводородной цепи, аминокислоты по физическим свойствам значительно отличаются от карбоновых кислот. При комнатной температуре они являются гидрофильными кристаллическими веществами, хорошо растворяются в воде. В органическом растворителе из-за диссоциации по карбоксильной группе и отщепления протона аминокислоты растворяются плохо, образуя смеси веществ, но не истинные растворы. Многие аминокислоты имеют сладкий вкус, тогда как карбоновые кислоты - кислые.

Указанные физические свойства обусловлены наличием двух функциональных химических групп, из-за которых вещество в воде ведет себя как растворенная соль. Под действием молекул воды от карбоксильной группы отщепляется протон, акцептором которого является аминогруппа. За счет смещения электронной плотности молекулы и отсутствия свободно двигающихся протонов рН (показатель кислотности) раствор остается достаточно стабильным при добавлении кислот или щелочей с высокими константами диссоциации. Это означает, что аминокислоты способны образовывать слабые буферные системы, поддерживая гомеостаз организма.

Важно, что модуль заряда диссоциированной молекулы аминокислоты равен нулю, так как протон, отщепленный от гидроксильной группы, принимается атомом азота. Однако на азоте в растворе формируется положительный заряд, а на карбоксильной группе - отрицательный. Способность диссоциировать напрямую зависит от кислотности, а поэтому для растворов аминокислот существует изоэлектрическая точка. Это рН (показатель кислотности), при котором наибольшее количество молекул имеют нулевой заряд. В таком состоянии они неподвижны в электрическом поле и не проводят ток.

СТРОЕНИЕ И СВОЙСТВА АМИНОКИСЛОТ, ВХОДЯЩИХ В СОСТАВ БЕЛКОВ. ПЕПТИДНЫЕ СВЯЗИ, СОЕДИНЯЮЩИЕ АМИНОКИСЛОТЫ В ЦЕПИ

Белки - полимерные молекулы, в которых мономерами служат аминокислоты. В составе белков в организме человека встречают только 20 α-аминокислот. Одни и те же аминокислоты присутствуют в различных по структуре и функциям белках. Индивидуальность белковых молекул определяется порядком чередования аминокислот в белке. Аминокислоты можно рассматривать как буквы алфавита, при помощи которых, как в слове, записывается информация. Слово несёт информацию, например о предмете или действии, а последовательность аминокислот в белке несёт информацию о построении пространственной структуры и функции данного белка.

А. Строение и свойства аминокислот

1. Общие структурные особенности аминокислот, входящих в состав белков

Общая структурная особенность аминокислот - наличие амино- и карбоксильной групп, соединённых с одним и тем же α-углеродным атомом. R - радикал аминокислот - в простейшем случае представлен атомом водорода (глицин), но может иметь и более сложное строение.

В водных растворах при нейтральном значении рН α-аминокислоты существуют в виде биполярных ионов.

В отличие от 19 остальных α-аминокислот, пролин - иминокислота, радикал которой связан как с α -углеродным атомом, так и с аминогруппой, в результате чего молекула приобретает циклическую структуру.

19 из 20 аминокислот содержат в α-положении асимметричный атом углерода, с которым связаны 4 разные замещающие группы. В результате эти аминокислоты в природе могут находиться в двух разных изомерных формах - L и D. Исключение составляет глицин, который не имеет асимметричного α-углеродного атома, так как его радикал представлен только атомом водорода. В составе белков присутствуют только L- изомеры аминокислот.

Чистые L- или D-стереоизомеры могут за длительный срок самопроизвольно и неферментатив-но превращаться в эквимолярную смесь L- и D-изомеров. Этот процесс называют рацемизацией. Рацемизация каждой L-аминокислоты при данной температуре идёт с определённой скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, в твёрдой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L- изомер, поэтому по содержанию D-аспартата можно рассчитать возраст обследуемого.

Все 20 аминокислот в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к α-углеродному атому.

2. Классификация аминокислот по химическому строению радикалов

По химическому строению аминокислоты можно разделить на алифатические, ароматические и гетероциклические (табл. 1-1).

В составе алифатических радикалов могут находиться функциональные группы, придающие им специфические свойства: карбоксильная (-СООН), амино (-NH2 ), тиольная

(-SH), амидная (-CO-NH2 ), гидроксильная (-ОН) и гуанидиновая группы.

Названия аминокислот можно построить по заместительной номенклатуре, но обычно используют тривиальные названия (табл. 1-2).

Таблица 1-1. Классификация основных аминокислот белков по их химическому строению

Таблица 1-2. Примеры названий аминокислот по заместительной номенклатуре и соответствующие тривиальные названия

Название аминокислоты

Формула аминокислоты

Тривиальное название

по заместительной

номенклатуре

2-амино-З-

гидроксипропановая кислота

Метионин

метилтиомасляная кислота

Для записи аминокислотных остатков в молекулах пептидов и белков используют трёхбуквенные сокращения их тривиальных названий, а в некоторых случаях и однобуквенные символы (см. табл. 1-1).

Тривиальные названия часто происходят от названия источника, из которого они впервые были выделены, или от свойств данной аминокислоты. Так, серии впервые был выделен из фиброина шёлка (от лат. serieum - шелковистый), а глицин получил свое название из-за сладкого вкуса (от греч. glykos - сладкий).

3. Классификация аминокислот по растворимости их радикалов в воде

Все 20 аминокислот в белках организма человека можно сгруппировать по способности их радикалов растворяться в воде. Радикалы можно выстроить в непрерывный ряд, начинающийся полностью гидрофобными и заканчивающийся сильно гидрофильными.

Растворимость радикалов аминокислот определяется полярностью функциональных групп, входящих в состав молекулы (полярные группы притягивают воду, неполярные её отталкивают).

Аминокислоты с неполярными радикалами

К неполярным (гидрофобным) относят радикалы, имеющие алифатические углеводородные цепи (радикалы аланина, валина, лейцина, изолейцина, пролина и метионина) и ароматические кольца (радикалы фенилаланина и триптофана). Радикалы таких аминокислот в воде стремятся друг к другу или к другим гидрофобным молекулам, в результате чего поверхность соприкосновения их с водой уменьшается.

Аминокислоты с полярными незаряженными радикалами

Радикалы этих аминокислот лучше, чем гидрофобные радикалы, растворяются в воде, так как в их состав входят полярные функциональные группы, образующие водородные связи с водой. К ним относят серии, треонин и тирозин, имеющие

гидроксильные группы, аспарагин и глутамин, содержащие амидные группы, и цистеин с его тиольной группой.

Цистеин и тирозин содержат соответственно тиольную и гидроксильную группы, способные к диссоциации с образованием Н+ , но при рН около 7,0, поддерживаемого в клетках, эти группы практически не диссоциируют.

Аминокислоты с полярными отрицательно заряженными радикалами

К этой группе относят аспарагиновую и глутаминовую аминокислоты, имеющие в радикале дополнительную карбоксильную группу, при рН около 7,0 диссоциирующую с образованием СОО- и Н+ . Следовательно, радикалы данных аминокислот - анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

Аминокислоты с полярными положительно заряженными радикалами

Дополнительную положительно заряженную группу в радикале имеют лизин и аргинин. У лизина вторая аминогруппа, способная присоединять Н+ , располагается в?- положении алифатической цепи, а у аргинина положительный заряд приобретает, хуанидиновая группа, Кроме того, гистидин содержит слабо ионизированную имидазольную группу, поэтому при физиологических колебаниях значений рН (от 6,9 до 7,4) гистидин заряжен либо нейтрально, либо положительно. При увеличении количества протонов в среде имидазольная группа гистидина способна присоединять протон, приобретая положительный заряд, а при увеличении концентрации гидроксильных групп - отдавать протон, теряя положительный заряд радикала. Положительно заряженные радикалы - катионы (см. схему ниже).

Наибольшей растворимостью в воде обладают полярные заряженные радикалы аминокислот.

4. Изменение суммарного заряда аминокислот в зависимости от рН среды

При нейтральных значениях рН все кислотные (способные отдавать Н+ ) и все основные (способные присоединять Н+ ) функциональные группы находятся в диссоциированном состоянии.

Поэтому в нейтральной среде аминокислоты, содержащие недиссоциирующий радикал, имеют суммарный нулевой заряд. Аминокислоты, содержащие кислотные функциональные группы, имеют суммарный отрицательный заряд, а аминокислоты, содержащие основные функциональные группы, - положительный заряд (табл. 1-3).

Изменение рН в кислую сторону (т.е. повышение в среде концентрации Н+ ) приводит к подавлению диссоциации кислотных групп. В сильно кислой среде все аминокислоты приобретают положительный заряд.

Напротив, увеличение концентрации ОН- групп вызывает отщепление Н+ от основных функциональных групп, что приводит к уменьшению положительного заряда. В сильно щелочной среде все аминокислоты имеют суммарный отрицательный заряд.

5. Модифицированные аминокислоты, присутствующие в белках

Непосредственно в синтезе белков организма человека принимают участие только 20 перечисленных аминокислот. Однако в некоторых белках имеются нестандартные модифицированные аминокислоты - производные одной из этих 20 аминокислот. Например, в молекуле коллагена (фибриллярного белка межклеточного матрикса) присутствуют гидроксипроизводные лизина и пролина - 5-гидроксилизин и 4- гидроксипролин.

Модификации аминокислотных остатков осуществляются уже в составе белков, т.е. только

Модифицированные аминокислоты, найденные в составе белков

после окончания их синтеза. Введение дополнительных функциональных групп в структуру аминокислот придаёт белкам свойства,

Схема. Структура полярных заряженных аминокислот в диссоциированной форме

Таблица 1-3. Изменение суммарного заряда аминокислот в зависимости от рН среды

необходимые для выполнения ими специфических функций. Так, α-карбоксиглутаминовая кислота входит в состав белков, участвующих в свёртывании крови, и две близко лежащие карбоксильные группы в их структуре необходимы для связывания белковых факторов с ионами Са2+ . Нарушение карбоксилирования глутамата приводит к снижению свёртываемости крови.

6. Химические реакции, используемые для обнаружения аминокислот

Способность аминокислот вступать в те или иные химические реакции определяется наличием в их составе функциональных групп. Так как все аминокислоты, входящие в состав белков, содержат у α-углеродного атома амино- и карбоксильную группы, они могут вступать в характерные для всех аминокислот химические реакции. Наличие какихлибо функциональных групп в радикалах индивидуальных аминокислот определяет их способность вступать в специфичные для данных аминокислот реакции.

Нингидриновая реакция на α-аминокислоты

Для обнаружения и количественного определения аминокислот, находящихся в растворе, можно использовать нингидриновую реакцию.

Эта реакция основана на том, что бесцветный нингидрин, реагируя с аминокислотой, конденсируется в виде димера через атом азота, отщепляемый от α-аминогруппы аминокислоты. В результате образуется пигмент красно-фиолетового цвета. Одновременно происходит декарбоксилирование аминокислоты, что приводит к образованию СО2 и соответствующего альдегида. Нингидриновую реакцию широко используют при изучении первичной структуры белков (см. схему ниже).

Так как интенсивность окраски пропорциональна количеству аминокислот в растворе, её используют для измерения концентрации α аминокислот.

Нингидриновая реакция, используемая для определения α аминокислот

Специфические реакции на отдельные аминокислоты

Качественное и количественное определение отдельных аминокислот возможно благодаря наличию в их радикалах особенных функциональных групп.

Аргинин определяют с помощью качественной реакции на гуанидиновую группу (реакция Сакагучи), а цистеин выявляют реакцией Фоля, специфичной на SH-группу данной аминокислоты. Наличие ароматических аминокислот в растворе определяют ксантопротеиновой реакцией (реакция нитрования), а наличие гидроксильной группы в ароматическом кольце тирозина - с помощью реакции Миллона.

Б. Пептидная связь. Строение и биологические свойства пептидов

α-Аминокислоты могут ковалентно связываться друг с другом с помощью пептидных связей. Пептидная связь образуется между а-карбоксильной группой одной аминокислоты и α-аминогруппой другой, т.е. является амидной связью. При этом происходит отщепление молекулы воды (см. схему А).

1. Строение пептида

Количество аминокислот в составе пептидов может сильно варьировать. Пептиды, содержащие до 10 аминокислот, называют олигопептиды Часто в названии таких молекул указывают количество входящих в состав олигопептида аминокислот: трипептид, пентапептид, окгапептид и т.д.

Пептиды, содержащие более 10 аминокислот, называют "полипептиды", а полипептиды, состоящие из более чем 50 аминокислотных остатков, обычно называют белками. Однако эти названия условны, так как в литературе термин "белок" часто употребляют для обозначения полипептида, содержащего менее 50 аминокислотных остатков. Например, гормон глюкагон, состоящий из 29 аминокислот, называют белковым гормоном.

Мономеры аминокислот, входящих в состав белков, называют "аминокислотные остатки". Аминокислотный остаток, имеющий свободную аминогруппу, называется N- концевым и пишется слева, а имеющий свободную?-карбоксильную группу - С-концевым и пишется справа. Пептиды пишутся и читаются с N-конца. Цепь повторяющихся атомов в полипептидной цепи -NH-CH-CO-носит название "пептидный остов" (см. схему Б).

При названии полипептида к сокращённому названию аминокислотных остатков добавляют суффикс -ил, за исключением С-концевой аминокислоты. Например, тетрапептид Сер-Гли-Про-Ала читается как серилглицилпролилаланин.

Пептидная связь, образуемая иминогруппой пролина, отличается от других пептидных связей, так как атом азота пептидной группы связан не с водородом, а с радикалом.

Пептиды различаются по аминокислотному составу, количеству и порядку соединения аминокислот.

Серилглицилпролилаланин

Схема А. Образование дипептида

Схема Б. Строение пептидов

Сер-Гис-Про-Ала и Ала-Про-Гис-Сер - два разных пептида, несмотря на то, что они имеют одинаковые количественный и качественный составы аминокислот.

2.Характеристика пептидной связи

Пептидная связь имеет характеристику частично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вследствие этого мало подвижна. Электронное строение пептидной связи определяет плоскую жёсткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу (рис. 1-1).

Связь между α углеродным атомом и α-аминогруппой или α-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации.

Пептидные связи обычно расположены в транс-конфигурации, т.е. α-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся на наиболее удалённом расстоянии друг от друга в пространстве (рис. 1-2).

Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках (нейтральная среда, температура тела). В лабораторных условиях гидролиз пептидных связей белков проводят в запаянной ампуле с концентрированной (6 моль/л) соляной кислотой, при температуре более 105 °С, причём полный гидролиз белка до свободных аминокислот проходит примерно за сутки.

В живых организмах пептидные связи в белках разрываются с помощью специальных протеолитических ферментов (от англ, protein - белок, lysis - разрушение), называемых также протеазами, или пептидгидролазами.

Для обнаружения в растворе белков и пептидов, а также для их количественного определения используют биуретовую реакцию (положительный результат для веществ, содержащих в своём составе не менее двух пептидных связей).

3.Биологическая роль пептидов

В организме человека вырабатывается множество пептидов, участвующих в регуляции различных биологических процессов и обладающих высокой физиологической активностью.

Рис. 1-1. Плоскости расположения пептидных групп и α -углеродных атомов в пространстве.

Рис. 1-2. Транс-конфигурация пептидных связей. Функциональные группы -СО- и -NH-,

образующие пептидные связи, не ионизированы, но полярны, и могут участвовать в образовании водородных связей.

Количество аминокислотных остатков в структуре биологически активных пептидов может варьировать от 3 до 50. К одним из самых "маленьких" пептидов можно отнести ти- реотропин-рилизинг-гормон и глутатион (трипептиды), а также энкефалины, имеющие в своём составе 5 аминокислот. Однако большинство биологически активных пептидов имеет в своём составе более 10 аминокислот, например нейропептид Y (регулятор аппетита) содержит 36 аминокислот, а кортиколиберин - 41 аминокислоту.

Некоторые из пептидов, в частности большинство пептидных гормонов, содержат пептидные связи, образованные а-аминогруппой и а-карбоксильной группой соседних аминокислот. Как правило, они синтезируются из неактивных белковых предшественников, в которых специфические протеолитические ферменты разрушают определённые пептидные связи.

Ангиотензин II - октапептид, образующийся из крупного белка плазмы крови ангиотензиногена в результате последовательного действия двух протеолитических ферментов.

Первый протеолитический фермент ренин отщепляет от ангиотензиногена с N-конца пептид, содержащий 10 аминокислот, называемый ангиотензином I. Второй протеолитический фермент карбоксидипептидилпептидаза отщепляет от С-конца

В продолжение темы:
Здоровье

Подкрыльцовая ямка (подмышечная ямка) - это область, ограниченная спереди большой грудной мышцей, сзади - широкой мышцей спины, снутри - передней зубчатой мышцей, а снаружи -...

Новые статьи
/
Популярные